R R

RBS5X (tm)
EPROM PROGRAMMING GUIDE

May 1984

GENERAL ROBOTICS CORPORATION
14618 W. 6th Ave., Suite 150
Golden, Colorado 80401

(303) 277-2574

ES

Memar,

Copyright 1984 General Robotics Corporation
All Right Reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocOPY: recording, Or otherwise,
without the prior written permission of the publisher.

GENERAL ROBOTICS CORPORATION
14618 W. 6th Ave., Suite 150
Golden, Colorado 80401

RB5X 1s a registered trademark of General Robotics Corporation.
Tiny BASIC is a registered trademark of National Semiconductor

Corporation.

RBSX (tm)
EPROM PROGRAMMING GUIDE

May 1984 e

This guide is written as an aid to those who wish to write their
own EPROM (erasable programmable read-only memory) routines and
create their own software modules for RB5X(tm). EPROM
programming is not difficult, but it does require a certain
amount of programming knowledge,

This guide is most useful to those programmers who are familiar
with Tiny BASIC and with INS 8073 assembly language programming.
For those who need more information on these subjects, we
strongly recommend the Tiny BASIC Users Manual (RB Robot part
no. 03-1002) and the 70-Series Users Manual (RB Robot part no.
03-1001), both of which can be ordered directly from RB Robot
Corporation.

1f, after reading this guide, you find that EPROM programming is
beyond your current capabilities but you still want to develop
your own software modules, call RB Robot at (303) 279-5525. We
can put you in touch with individuals who can do EPROM
programming and create custom software modules for RB53X.

BASICS OF INS 8073 OPERATION

RB5X is a programmable robot, designed to execute programs. As
with any programmable device, RB5X contains memory and a central
processing unit (CPU). The CPU executes programs stored in
memory.

RB5X's CPU is the INS 8073 microprocessor, which contains a Tiny
BASIC interpreter.

A Tiny BASIC "line" is a sequence of characters followed by a
carriage return. The Tiny BASIC interpreter takes a line and
attempts to interpret it to provide instructions to the 8073
microprocessor. If the line can be interpreted, it is called
nwell-formed."” Well-formed Tiny BASIC lines must be one of the
following:

1. Tiny BASIC command - These commands are executed
immediately upon interpretation by the 8073. For
example:

NEW $1000 - Sets the start of the Tiny BASIC program
pointer at the end of Tiny BASIC.

NEW - Sets the end of the Tiny BASIC program pointer
to the start of the Tiny BASIC program pointer.

oo

- a e ,J_.,;;

PRINT X - Sends the value of the variable X to the
output device.

RUN - Begins execution of the Tiny BASIC program
starting at the beginning of the Tiny BASIC program
pointer.

2. Assignment - An assignment places a value into a memory
location and must be of the form argument 1 = argument
2. For example:

X=5 -~ places the decimal number 5 into the memory
location used for variable X.

X=Y - Places the value contained in the memory
location used for variable Y into the memory location
used for variable X.

@42200=5 - Places the decimal number 5 intoc memory A
location 2200 hexadecimal.

@42103=4FE - Places the hexadecimal number FE into
memory location 2103 hexadecimal.

3. Tiny BASIC program line - The INS 8073 recognizes
program lines because each one starts with a number.
The B073 interprets the number, but the rest of the line
is not interpreted until the program is RUN. Tiny BASIC
program lines contain Tiny BASIC commands oOr
assignments. The program line is placed into memory
starting at the top of the Tiny BASIC pointer. The top
of the Tiny BASIC pointer is incremented to point to the
next available memory location for program lines.

When a program is RUN, each Tiny BASIC program line is
interpreted in line number sequence.

Examples of Tiny BASIC program lines include:

10 CLEAR

20 LET X=0

30 FOR I=1 TO 10
40 GOsUB 500

50 NEXT 1

60 STOP

500 X=X+1

510 RETURN {

Any Tiny BASIC program line of a form other than the
above causes Tiny BASIC to issue an ERROR 4 (syntax
error).

¢
TINY BASIC PROGRAM LINE STORAGE FORMAT

The INS 8073 places the characters in a Tiny BASIC program line
in adjacent memory locations. Each character is represented by
its corresponding hexadecimal ASCII code in the robot's memory.
The ASCII codes we need for the examples that follow are shown
in Table 1.

rable 1.
ASCII Character Codes

& d
p

ASCII Character Decimal * " Hexadecimal

carriage return 13 0D
space 32 N 20 o
! 33 __ 21 i
" 34 22 %
35 ' 23 i
$ 36) 24
% 37 25 J
& 38 , 26 A
' 39 ' 27 &
(40 | 28 :
) 41 29
* 42 2R a
+ - 43 2B w
' - 44 B 2C X
! 45 2D T
. 46 2E 8
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36

o 7 e . 55 | 37

h 8 o 56 ' 38
9 57 o 39
: 58 i 3a
! 59 3B
< 60 3C
= e 61 L D ,
> 62 T 3E o
? 63 3F
e 64 40
A 65 ‘ 4]
B 66 42
C 67 - 43
D

68 44

Table 1. (cont.)

ASCII Character Decimal Hexadecimal
E 69 . 45
F 70 . 46
G 71 47
H 72 48
I 73 C ey 49 e e
J 74 4A
K 75 - 4B
L 76 r 4C
M 17) 4D
N 78 4E
o 79 4F
P 80 50
Q 8l 51
R 82 : 52
S 83 53
T B4 54
U 85 o 55
v 86 56
W 87 57
X 88 - 58
Y 89 59
Z 90 S5A

Let's consider how the following Tiny BASIC line:
10 CLEAR

would be represented if it were to be placed in memory starting
at location 1000 hexadecimal.

The ASCII code for the character "1" goes in location 1000; the
ASCII codes for each of the other characters in the line go in
adjacent memory locations starting with hexadecimal 1000 as
below.

Location Character ASCII Code
: . {(Hexadecimal values)
1000 1 31
1001 0 : 30
1002 {blank) : 20
1003 C 43
1004 L : 4C
1005 E : 45
1006 A : 41
1007 R - 52
1008 (carriage return) oD

g

' e
Note especially the carriage return in location 1008. A line
must end in a carriage return.

An assembly language listing abbreviates the above in the
format:

1000 31302043 DB '10 CLEAR'
4C454152 :
1008 oD DB ODH :carriage return

Assembly language listings show the memory location on the far
left. The byte(s) contained in the location are shown in the
next column. The next two columns contain the mnemonics of the
assembler as operator/operand.

THEORY OF EPROM OPERATION

The 8073 and supporting hardware in RB5X are designed so that
when the robot is powered up, the 8073 first looks at memory
location B00O0 hexadecimal. This location is the start of the
EPROM addresses.

If there is an EPROM chip in the robot's software module socket,
the 8073 attempts to RUN a Tiny BASIC program whose first line
is stored starting at the EPROM's lowest address, hexadecimal
8000,

PLACING A TINY BASIC PROGRAM IN AN EPROM

To make an RB5X Tiny BASIC program run from an EPROM software
module, do the following:

1. Write, test, and debug the Tiny BASIC program on your
RB5X.

2. Convert the Tiny BASIC program, character-by-character,
into ASCII code.

3. Burn the ASCII code for the Tiny BASIC program
location-by-location into the EPROM, starting at the
lowest EPROM address using a PROM burner and software.

4. Insert the EPROM into the carrier (RB Robot part no,
2000-34061) that will allow it to be used with the RB5X,
making sure that pin 1 of the EPROM is matched with the
number one position marked on the carrier. Plug the

.~ EPROM into the socket on RB5X's interface panel, set the
socket switch to the appropriate position (2K or 4K} and
test the program.

As an example of EPROM programming, we'll put the following Tiny
BASIC program into an EPROM:

P

100 REM INITIALIZE 1/0 BIT

110 @47803=#98

120 REM TURN ON LED ASSEMBLY

130 @#7801=47C .
140 REM WAIT FOR BUMPER PRESS o
150 IF @#7800=255 GOTO 150

160 REM TURN OFF LED ASSEMBLY

170 @#7801=0

180 STOP

It is best not to include REM statements in an EPROM; they don't
do anything and they take up valuable memory. When we remove
them, our program then becomes:

110 e#7803=4#98

130 @#7801=#%7C

150 IF €#7800=255 GOTO 150
170 €47801=0

180 STOP

Tiny BASIC lines also don't need space characters to be
interpreted. Space characters also take up valuable memory.

I

Deleting all the spaces 1in our program, we obtain:

110@47803=498
130@#7801=47C S
150IF@#7800=255GOT0150
170€47801=0

180STOP

When these program lines are converted into ASCII code, our
program looks like the following assembly language listing.
(Here we assume a start location of 0000 hexadecimal.):

0000 31313040 '110€#7803=498"
23373830
333p2339
38 o
000D OD ODH :carriage return
00Q0E 31333040 . _ ‘ ~ '130e#7801=%7C'
23373830 '
313D2337
38 : ,
001B OD D " .. 0pH
001C 31353049 L '150IFQ@#7800=255G0T0150"
464023137
3830303D
32353547 s.n .. s e cpreens o _
4F544F31 B T S i
3530 . '
0032 QD : : 0DH
0033 31373040 = "170@47801=0"

a2

)

23373830

331D30

003E 0D ODH

003F 31383053 '180STQP"
544F50

0046 0D ODH

Please note that it is a straightforward task to write a program
that converts the characters in a text file into their ASCII

codes.

One way of organizing this information before placing the
putting it into an array, as below.

program in an EPROM is by

0000
0010
0020
0030
0040

31313040
30402337
46402337
35300031
38305354

23373830
3830313D
3830303D
37304023
4F500DXX

333D2339 380D3133
2337380D 31343049
32353547 4F544F31
37383031 3D300D31
XXXXXXXX XXXXXXXX

An "XX" byte is shown at locations 0047 through 004E since the
program ends at location 0046. It doesn't matter what is in
these other locations.

An EPROM may now be burned or "blasted" from this array. Folloﬁ
the instructions supplied with your PROM burner.

LINKING TO MACHINE LANGUAGE ROUTINES

The Tiny BASIC command LINK #XXXX, where "XXXX" is a hexadecimal
address, directs the Tiny BASIC interpreter to execute an 8073
machine language program starting at the indicated address. 1In
writing Tiny BASIC programs for EPROMS, the addresses of all
necessary machine language routines used by the Tiny BASIC
program must be calculated prior to programming the EPROM.

As an example, suppose we want to use the following Tiny BASIC
program in an EPROM:

10 @#780B=#A7: REM INITIALIZE PORT FOR VOICE
20 S=#XXXX: REM POINTER TO PHONEME LIST
30 LINK #YYYY: REM RUN SPEAKING ROUTINE

"XXXX" and "YYYY" are strings of dummy characters representing
addresses. This program calls a speech routine at a location
represented by YYYY hexadecimal to speak a phoneme list that
begins at a location represented by XXXX hexadecimal. Before we
can program the EPROM, we must determine what these two
locations are to be.

First, compress the program by deleting all REM statements and
space characters. We obtain:

I L T

10@#780B=%A7
20S=#XXXX
30LINK#YYYY

Next, count the number of characters in the program. Make sure
to include carriage returns in the count.

This program is decimal 35 or hexadecimal #23 characters long.
Since all Tiny BASIC programs in an EPROM start at location
#8000 hexadecimal, the program occupies locations #8000 to #8022
in the EPROM.

The first machine language code in an EPROM program must begin
after the Tiny BASIC program.

Take special care when placing a machine language routine at a
specific location in memory that the machine language routine
can run at that location; i.e., the routine must be written
either in relocatable code Or specifically for the memory
location at which it is to operate. It should be noted that
poth the speech and the sonar routines in the utility software
module listing are in relocatable code.

Let's put our speech routine immediately after the Tiny BASIC
program. The speech routine should then begin at hexadecimal
$8023, We can now replace the dummy string YYYY used for the
address of the speech routine in the Tiny BASIC program:

10@#780B=#A"7
205=#XXXX
30 LINK#8023

For our speech routine, we'll use the code from the utility
software module shown in the ngoftware" section of the RB5X
Reference Manual. In the listing in the manual, this code runs
from location #82D8 hexadecimal through #B33E hexadecimal in
version 1.0 of the utility coftware module, and from location
$82CE to #8334 in versions 1.3 and l.4.

This code is 103 decimal bytes or 45D hexadecimal bytes long, SO
in our EPROM program it goes from §8023 hexadecimal to #8080
hexadecimal.

Let's locate the phoneme list immediately after the speech
routine, at #808BA hexadecimal. 'The dummy string XXXX in our
program then becomes g08a, and so the completed Tiny BASIC
program is:

10@4780B=#A7
205=%#808A
30LINK#8D23

This program may now be converted to its ASCJI code and stored
in an array as below. '

0000 31304023 37383042 3D234137 0D323053,
0010 3D233830 38410D33 304C494E 4B233830 -
0020 32330DXX XXXXXXXX XXXXXXXX XXXXXXXX

Next the speech routine is entered into the array byte for byte

from the utility software module listing.
list is entered.

Finally, the phoneme

The completed array is shown below:

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

31304023
3D233830
32330D82
CBOBC40A
CBOBC40D
CB088400
0940D410
84000009
D4106CFO
XHXXXXXX

37383042
38410D33
24564627
CB0OBC403
CBOBC200
0009C30A
6CF032B4
C30AD408
5EC400CB
XXXXXXXX

3D234137
304C494E
0078C47C
CB0BC408
09D43FFC
D4087C0A
01004674
7COADBB4
015CKXXXX
XXXAXEKXX

0D323053
4B233830
CB01C409
CBOBC40A
3F6C1EQOB
0BB40100
D90BCBOS8
01000940
XXXXXXXX
XXXXXXXX

Note the speech routine beginning at relative location #0023 in
the array. This corresponds to the address #8023 in our EPROM

program. The sequence of Xs that begins at relative location
#00BA above indicates our phoneme list, which begins at #808A in
the EPROM,

SUMMARY OF PROCEDURES FOR USING MACHINE LANGUAGE ROUTINES
1. Write and debug your Tiny BASIC program.

2. Compress the program, omitting all REM statements and space
characters.

3. Represent each digit that refers to an address in the EPROM j
program with a dummy character. :

4. Calculate the length of the program,

5. Calculate where the EPROM program will end:; i.e., add the
length of the program to #8000 (32768 decimal}. The first
machine language routine in the EPROM program must begin
after this location.

6. Calculate the addresses where each of the machine 1anguage
routines in the EPROM program will reside. Fill in the
dummy digits in the program from step 3 with an appropriate
digit.

7. Convert the Tiny BASIC program from step 6 to hexadecimal
ASCII code values and fill in the array.

e : ' -
8. Continue to fill in the array with the appropriate machine

language routines.

9. Check the starting address of each routine in the array
against the address entered in the program in step 6.

10. The EPROM program may now be burned from the array. Follow
the instructions that came with your PROM burner for best

results, _
Important Addresses and Numbers
Hexadecimal Decimal
Start of EPROM $8000 32768
Length of speech routine in
utility software module #5D _ 103
Length of sonar routine in :
utility software module 1.0 $36 ' . 54
Length of sonar routine in
utility software module 1.3 & 1.4 #3C 60

AR

10

N T

